

Pergamon Tetrahedron Letters 42 (2001) 4913–4914

TETRAHEDRON LETTERS

An enantiospecific formal total synthesis of (−)-aplysin and (−)-debromoaplysin

A. Srikrishna* and N. Chandrasekhar Babu

Department of Organic Chemistry, *Indian Institute of Science*, *Bangalore* 560 012, *India* Received 3 April 2001; accepted 16 May 2001

Abstract—An enantiospecific approach to marine sesquiterpenes (−)-debromoaplysin and (−)-aplysin, starting from (*R*)-limonene employing a Claisen rearrangement as the key step, is described. © 2001 Elsevier Science Ltd. All rights reserved.

Aplysin **1**, one of the first halogenated marine sesquiterpenes to be reported, was isolated from the red alga *Laurencia* and the sea hare *Aplysia*. The logical biogenetic precursor debromoaplysin **2** and the related debromoaplysinol **3**, aplysinol **4** and isoaplysin **5** have also been isolated from these species, $¹$ and some of</sup> them exhibit antifeedant properties. The presence of an interesting tricyclic structure and associated properties made these compounds attractive synthetic targets.² Besides a few approaches to racemic aplysins, two enantioselective strategies have been reported for debromoaplysin and aplysin.2 Herein, we report an enantiospecific approach to debromoaplysin **2** and aplysin **1** starting from the monoterpene (*R*)-limonene **6** and employing a Claisen rearrangement as the key step. It was anticipated that a stereoselective Claisen rearrangement³ of the *m*-cresyl ether 7 of the allyl alcohol **8** followed by cyclisation could generate the aplysin carbon framework directly. The synthetic sequence starting from (*R*)-limonene **6** is depicted in Scheme 1. To begin with, (*R*)-limonene **6** was converted into the allyl alcohol 8 in three steps⁴ viz controlled ozonolysis, intramolecular aldol condensation and reduction of the aldehyde. The key intermediate 7, $[\alpha]_D^{24}$ $+81.5$ (c 1.4, CHCl₃), was obtained by coupling the allyl alcohol 8 with *m*-cresol under Mitsunobu conditions⁵ employing triphenylphosphine and diisopropyl azodicarboxylate (DIAD) in 83% yield. Thermal activation of the ether **7** in *N*,*N*-dimethylaniline in a sealed tube at 180°C for 72 h generated a 5:1:2 mixture of the cyclised products **9**† and **10** derived from the *ortho* Claisen rearrangement, and the *para* Claisen rearrangement product **11**, in 64% yield, which were separated by silica gel and silver nitrate impregnated silica gel column chromatography. Next, attention was turned towards conversion of **9** into aplysins via degradation of the isopropenyl group employing a Criegee rearrangement.6 Thus, ozonolysis of the compound **9** in methanol–methylene chloride followed by treatment of the resulting methoxyhydroperoxide with acetic anyhydride, triethyl-

* Corresponding author. Fax: 91-80-3600683; e-mail: ask@orgchem.iisc.ernet.in

[†] All the compounds exhibited spectral data consistent with their structures. Selected spectral data for the compound 9: isolated yield 40%; $[\alpha]_D^{22}$ -50.2 (*c* 1.4, CHCl₃). IR (neat): v_{max}/cm⁻¹ 1645, 1621, 1591, 1090, 887. ¹H NMR (300 MHz, CDCl₃+CCl₄): δ 6.90 (1H, d, *J* 7.5 Hz), 6.61 (1H, d, *J* 7.5 Hz), 6.50 (1H, br s), 4.87 (1H, s), 4.69 (1H, s), 2.64 (1H, t, *J* 9.0 Hz), 2.28 (3H, s), 2.10–1.80 (2H, m), 1.86 (3H, s), 1.70–1.55 (2H, m), 1.20 (3H, s), 1.15 (3H, s). ¹³C NMR (75 MHz, CDCl₃+CCl₄): δ 157.1 (C), 144.9 (C), 137.7 (C), 135.4 (C), 122.8 (CH), 121.3 (CH), 111.4 (CH₂), 110.7 (CH), 98.5 (C), 56.3 (CH), 53.4 (C), 39.2 (CH₂), 26.6 (CH₂), 24.7 (CH₃), 23.6 (CH₃), 21.6 (CH₃), 16.8 (CH₃). For the acetate **12**: [α]²⁴ -49.9 (*c* 4.5, CHCl₃). IR (neat): $v_{\text{max}}/\text{cm}^{-1}$ 1742. ¹H NMR (300 MHz, CDCl₃+CCl₄): δ 6.94 (1H, d, *J* 7.2 Hz), 6.61 (1H, d, *J* 7.2 Hz), 6.47 (1H, br s), 5.20 (1H, br s), 2.29 (3H, s), 2.07 (3H, s), 2.00–1.55 (4H, m), 1.35 (3H, s), 1.30 (3H, s). ¹³C NMR (75 MHz, CDCl₃+CCl₄): δ 169.3 (C), 157.7 (C), 138.1 (C), 132.5 (C), 122.5 (CH), 121.5 (CH), 110.0 (CH), 98.8 (C), 81.8 (CH), 53.2 (C), 41.3 (CH₂), 28.9 (CH₂), 22.9 (CH₃), 21.6 (CH₃), 21.1 (CH₃), 17.0 (CH₃).

Scheme 1. *Reagents, conditions and yields:* (a) O_3/O_2 , CH₂Cl₂–MeOH (5:1), −70°C; Me₂S, rt, 5 h; 70%; (b) piperidine, AcOH, C₆H₆, reflux, 1 h, 75%; (c) CeCl₃·6H₂O, NaBH₄, MeOH, 0°C, 0.5 h, 92%; (d) *m*-cresol, PPh₃, DIAD, rt, 10 h, 83%; (e) PhNMe₂, sealed tube, 180°C, 72 h, 64%; (f) O_3/O_2 , CH₂Cl₂–MeOH (5:1), -70°C; Ac₂O, NEt₃, DMAP, C₆H₆, reflux, 75%; (g) K₂CO₃, MeOH, rt, 2 h; PCC, NaOAc, CH₂Cl₂, rt, 1 h; 86%; (h) MeMgI, Et₂O; POCl₃-py, rt;⁷ (i) reference 2d.

amine and 4-dimethylaminopyridine (DMAP) in refluxing benzene generated the acetate **12**† in 75% yield. Hydrolysis of the acetate followed by oxidation of the resultant alcohol with PCC–NaOAc transformed the acetate **12** into the ketone **13**, $[\alpha]_D^{24}$ –313 (*c* 3.6, CHCl₃), which exhibited spectral data identical to that of the racemic⁷ compound. As expected, the same sequence transformed the minor isomer **10** into the enantiomeric ketone (+)-13, $[\alpha]_D^{23}$ +295 (*c* 0.35, CHCl₃). The ketone (−)-**13** was then transformed7 into the olefin (−)-**14**, $[\alpha]_{\text{D}}^{23}$ -102 (*c* 0.5, CHCl₃) {lit.^{2d} $[\alpha]_{\text{D}}^{25}$ -113 (*c* 0.2, $CHCl₃$, via a Grignard reaction followed by dehydration, which exhibited ¹H and ¹³C NMR spectral data identical to that reported.2d Since the olefin (−)-**14** has already been transformed2c,d into (−)-debromoaplysin **2** and (−)-aplysin **1**, via catalytic hydrogenation and bromination, the present sequence constitutes an enantiospecific total synthesis of these marine sesquiterpenes. Currently, we are investigating the extension of this methodology to other related sesquiterpenoids.

Acknowledgements

We thank the CSIR, New Delhi for the award of a research fellowship to N.C.B.

References

- 1. (a) Yamamura, S.; Hirata, Y. *Tetrahedron* **1963**, 19, 1485; (b) Suzuki, M.; Kurosawa, E. *Bull*. *Chem*. *Soc*. *Jpn*. **1979**, 52, 3352; (c) McMillan, J. A.; Paul, I. C.; Caccamese, S.; Rinehart, K. L. *Tetrahedron Lett*. **1976**, 4219; (d) Suzuki, M.; Kurata, K.; Kurosawa, E. *Bull*. *Chem*. *Soc*. *Jpn*. **1986**, 59, 3981.
- 2. For synthesis of racemic aplysin and debromoaplysins, see: (a) Harrowven, D. C.; Lucas, M. C.; Howes, P. D. *Tetrahedron Lett*. **1999**, 40, 4443; and *Tetrahedron* **2001**, ⁵⁷, 791 and references cited therein. For synthesis of optically active aplysin via optical resolution, see: (b) Ronald, R. C.; Gewali, M. B.; Ronald, B. P. *J*. *Org*. *Chem*. **1980**, 45, 2224. For enantioselective synthesis of (−)-aplysins, see: (c) Takano, S.; Moriya, M.; Ogasawara, K. *Tetrahedron Lett*. **1992**, 33, 329; (d) Nemoto, H.; Nagamochi, M.; Ishibashi, H.; Fukumoto, K. *J*. *Org*. *Chem*. **1994**, 59, 74.
- 3. Rhoads, S. J.; Raulins, N. R. *Org*. *React*. **1975**, ²², 1.
- 4. For a five step synthesis of **8**, see: Wolinsky, J.; Slabaugh, M. R.; Gibson, T. *J*. *Org*. *Chem*. **1964**, 29, 3740.
- 5. Hughes, D. L. *Org*. *React*. **1992**, ⁴², 335.
- 6. Schreiber, S. L.; Liew, W.-F. *Tetrahedron Lett*. **1983**, ²⁴, 2363.
- 7. Biswas, S.; Ghosh, A.; Venkateswaran, R. V. *J*. *Org*. *Chem*. **1990**, ⁵⁵, 3498.